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ABSTRACT

Uniqueness and boundedness of solutions of linear programs are clara:-

terized in terms of an optimal simplex tableau. Let M denote the submatrix

in an optimal simplex tableau with columns corresponding to degenerate optimal

dual basic variables. A primal optimal solution is unique if and only if

there exists a nonvacuous nonnegative linear combination of the rowF: of 2

corresponding to degenerate optimal primal basic variables which is posit vc.

The set of primal optimal solutions is bounded if and only if there exists a

nonnegative linear combination of the rows of M which is positive. When

M is empty the primal optimal solution is unique.
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ST PICNCEAND EXPLANATION

rolrrnmn.1 roblems are fundamental to operations resear~h anci

r(~~ Art-az. The simpl~ex method and its variants are the basic tools for

scivi; t~es, roblems. In this report we characterize those linear 1-roqram-

rolet-ms that have uniqiue solutions and those that have bounded solutions

in tcrns of information available once the Problem is solved by thle simplex

mecthod.
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OPTIMAL SIMPLEX TABLEAU CHARACTERIZATION

OF UNIQUE AND BOUNDED SOLUTIONS OF LINEAR PROGRAMS

0. L. Mangasarian

1. Introduction

In [4] the author gave a number of equivalent characterizations of the unicuenes- a

solution of a general linear programming problem. These characterizations did not incli- I:

explicit characterization which could be applied directly to the final optimal simrlex ta r:ia.

for the standard linear programmming problem in order to determine whether the particular-

mal solution represented by the tableau is unique or not. Such a characterization, gver. in

Theorem 1 below, follows after some nontrivial algebra from Theorem 2(v) [4]. However a SIM::

direct proof of this characterization is also possible and is given here for the sake of com-

pleteness. Theorem 2 characterizes the uniqueness of a dual optimal solution in terms of an

optimal simplex tableau also.

In [6] Williams gave characterizations of a bounded solution set of a linear iro:rar i:

terms of the initial data of the linear program. In Theorems 4 and 5 we characterize the

boundedness of the primal and dual optimal solution sets respectively in terms of an optirmal

simplex tableau. As expected the boundedness characterizations impose less strinqent conditic.%n

than the corresponding uniqueness characterizations. The possible and impossible combination-

of uniqueness, boundedness and degeneracy of primal and dual optimal solutions are summarize::

in Table 1. Examples following Table 1 illustrate all the possible combinations.

We introduce now the standard linear program in canonical form [I]

:' T
Maximize z = c y subject to Ay < b, y 0 (1)

YER

where c and b are given vectors in Rn and Rm
' 

respectively, A is a given real m n

* matrix and the superscript T denotes the transpose. We note immediately that uniqueness of

a solution y to (1) is equivalent to uniqueness of a solution (y,s) in Rn+m  to the

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7901066.
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ooalvalent ,,rollcm witji slack variable s in Rm

T
:Aaximize z = c y subject to s = -Ay + b, y > 0, s > 0

n+m

Dfine x = ('.s) and assume that after a finite number of pivots the following standard opti-

mal simplex tableau [1,51 has been obtained after a column and row rearrangement if necessary.

S+ N0 + N -o

S0 L + + xBL + M+ B

(3)

0 1 L I M 0Ox0 0 B0

0 0 + 0 0 z
uN uB u

0 +N+ U N0  u+ B 0

This is equivalent to the following condensed or Tucker tableau [2,7]

-x N+ -xN0 1
N N 1

+ -X0

I

u x = L M +
N B+ (*

UN+ XB L 0 0
0 0

1 z = + 0 Q

UB U W=
+ B0

For convenience define

L L o M o] and M= [
In the above tableaus the symbols are defined as follows:

XB = primal optimal positive basic variables (with values denoted by + in rightmost

column of tableau (3))
-2-
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x = primal optimal zero basic variables (with values denoted by 0 in rightmost column

of tableau (3))

us = dual optimal pcsitive basic variables (with values denoted by + in bottom row of

tableau (3))

u = dual optimal zero basic variables (with values denoted by 0 in bottom row of
3 tableau 

(3))

x = primal optimal (zero) nonbasic variables corresponding to u
0 =B+

xN = primal optimal (zero) nonbasic variables corresponding to u

o B
J N =dual optimal (zero) nonbasic variables corresponding to xB

uN = dual optimal (zero) nonbasic variables corresponding to x
N0 B 0

I = identity matrix of appropriate dimension

: + = matrix in tableau (3) with rows corresponding to xB and columns corresponding to
£uB °

MO = matrix in tableau (3) with rows corresponding to XB and columns corresponding to
UB
u B0

L+ = matrix in tableau (3) with rows corresponding to xB and columns corresponding to
+

B
+

L = matrix in tableau (3) with rows corresponding to xB and columns corresponding to
0

B+

xB = (xB X 0
' + B0

N = N+ XNo0

= (u u)B B+ N0

uN = (uN+ uN0

w = dual obJective function

Q = maximum value of the primal objective function on the feasible region.

-3-
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Our prnia results,~ : cotie nTerm 1 to :, are gie n em of h

()Primal uniqueness xE # 0 whenever u an M 0 an smet

B2 uluiuns whenever x 0and M q < 0 for some o 0

()Primal boundedness rTM > 0 for somie r > 0

(5) Dual boundedness Lt < 0 for some t > 0.

-4-
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2. Uniqueness of Solution

With the aid of the optimal tableau (3) it is possible to characteriz th-- u'. ........

a primal optimal solution as follows.

Therem 1 (Uniqueness of primal optimal solution). The primal oitimal ,

linear program (1), xB > 0, X = 0, x = 0, X = 
0, is unique if an ,,nl' if x,

B+ B N+ N

nonvacuous whenever u is nonvacuous and there exists a p > 0 such that"
B
0

Proof. The condition that there exists a p such that p > 0 and jT M is

alent by Motzkin's theorem of the alternative [3] to

-M0 q > 0, 0 # q > 0 has no solution q (4)

We establish now the necessity and sufficiency of condition (4) for the uniqueness of tht

solution (XB.,xN).

(Necessity) Let (xBxN) be a unique solution of (1). If uB0 is empty then conditioi.

(4) is vacuously satisfied because M 0  is vacuous. Suppose now that uB is nonvcuous thcn

XB is nonvacuous, else for sufficiently small positive A and for a vector e of ones th.

point X = x - AM e, x = 0, x = Ae is primal feasible and distinct from (x Bx. ,x .
B+ + + N + N0B + N+N

and the corresponding value of the objective function is z Q contradicting the uniquene's

of (XB +,XN +xN0). Hence M0  is nonvacuous. Suppose now that there exists a q such that

-Mq > 0 and 0 M q > 0, thus violating (4). We will show that this contradicts thu unic.ue-

ness of (xBXN). For a sufficiently small positive number X, the point

XB = xB AM+q > 0
+ +

0

x 0
N+

XN = q>0 , q 0

NAN

~*~* ~ ~A.. ~-5-



(
is jrimal feasible and distinct from (x ,xB ,x ,xN ) but the corresponding value of the

+ 0 + 0

objective function is i = Q thus contrdicting the uniqueness of (x ,x ,x ,xN ).

+ 0 + 0

(Sufficiency) IfuB0 is empty then for any other primal feasible point (x BxN ) dis-

tinct from (XBXN) at least one component of xN , say ix must be positive while
+ \+!k

x 0 in which case the corresponding value of the objective function is

T -
z = U B iN + = + - i 0<

+ + )

and hence (x BxN ) cannot be primal optimal and so (x Bx N ) is unique. Suppose now that

UB is nonvacuous then XB and consequently M are nonvacuous and suppose that (4) holds.
B0 B0 0

We will now show that if (xBx N ) is not unique a contradiction ensues. For a distinct opti-

mal solution (xBx ) to exist we need to have 0 (x 'x ) > 0. If 0 # x > 0, thenB N N N = N +

z = -uB x +Q < Q and hence the point cannot be optimal. So X = 0 and 0 x > 0.
+ N~ / ~ N

Now if for some k-th component of -N0x , 1-M X < 0, it follows that
. / 0\ 0 N Oik

xB = '-M0XN < 0 making the point infeasible. Hence -M0N0N > 0 and 0 x > 0,
0'k \ ~0k 0 0

which contradicts (4).

Remark 1. In [l,p.95] Dantzig established the sufficiency of the emptiness of u forB0

the uniqueness of the primal optimal solution. This is a special case of Theorem 1 above.

Uniqueness of a solution to the dual linear program

T TMinimize w = b v subject to Av > c, v > 0 (5)

v<R
m

associateO with the linear program (1) can also be obtained by means of the optimal tableau (3).

We again note that uniqueness of a solution v to (5) is equivalent to uniqueness of a

solution (v,t) in R to the equivalent linear program with slack variable t in R

Minimize w = b Tv subject to t = ATv - c, v > 0, t > 0 (6)
(v,t), R

m +n

The combined dual variables v and t are defined as u = (v,t) and appear in tableau (3).

By casting (5) into the equivalent format of problem (1)

-6-

LL



mm

T T

o :.- x~lz.,-w = -b v subiect to -A v  
, v v "7

4v

a. 23:. -:.aracteriz - uniqueness of its solution by means of tableau (3) as follows.

T,-oren_2. (Uniqueness of dual optimal solution) The dual optimal solution to the linear

.roc-ram (1), u , 0, UB = 0, u 0, U = 0, is unique if and only if uB is nonvacucus
B 0 N N N0  0

w:enever x B is nonvacuous and there exists a q > 0 such that M0 q < 0.

B-" combining Theorems 1 and 2 we can characterize the simultaneous uniqueness of both

rimal and dual optimal solutions as follows.

Theorem 3. (Uniqueness of primal and dual optimal solutions) The primal and dual optimal

;tiors to the linear program (1) are both unique if and only if both are nondegenerate, that

x is empty and uB is empty.

Proof. If both the primal and dual optimal solutions are nondegenerate then the dual

u:.timal solution is unique by Theorem 2 and the primal optimal solution is unique by Theorem 1.

Supuose now that both primal and dual optimal solutions are unique and that one of them is

degenerate. We will exhibit a contradiction. If the primal (dual) optimal solution is

degenerate then by Theorem 2 (Theorem 1) the dual (primal) optimal solution is also degenerate.

Hence both primal and dual optimal solutions are degenerate. By Theorem 1 then there exists a

Ssuch that p TMO > 0 and by Theorem 2 there exists a q > 0 such that M0 q < 0. Since

both p and q are nonzero this then leads to the contradiction

0 < (pTMo)q = pT(Moq) < 0

0

-7-*



3. Boundedness of Solution

Again with the aid of the optimal tableau (3) it is possible to characterize t:.-

ness of a primal optimal solution set as follows.

Theorem 4. (Boundedness of the primal optimal solution set) The primal o! tu- "

set to the linear program (1) is bounded if and only if for some or all optimal si=!-x

tableaus such as (3) there exists an r > 0 such that r TM > 0.

Proof. Again as in the proof of Theorem 1, the condition that there exists ar .

that r > 0 and rTM > 0 is equivalent by Motzkin's theorem of the alternative [31

-Ms > 0, 0 # s > 0 has no solution s

We establish now the necessity and sufficiency of condition (8) for the boundedness of ti.

solution set of (1).

(Necessity) Let (3) be some optimal tableau for problem (1) and let there exist a

s satisfying s > 0 and -Ms > 0. We will show that this implies that the primal o-:tima

solution set is unbounded. For any positive X the point

+B I-XMs > 0

X N =0

+

XB > 0

NN 0

is primal feasible, the corresponding value of the objective function is Q and hence is

optimal. However iIxN0 -= X1is1t is unbounded as X -+ because s # 0. Hence the primal

optimal solution set is unbounded.

(Sufficiency) If for some optimal tableau (3) uB0 is empty then by Theorem 1, (x B,xN

is a unique solution of problem (1). So suppose now that u B is nonempty for all optimal

tableaus of problem (1) and let (3) be any such optimal tableau. We will show that if (1) .ac

an unbounded primal optimal solution set then there exists a nonzero s such that s 0 an

--

Lj______________ _________



I~.

-Ms > 0. Since the primal optimal solution set is unbounded there exists a >- u - : :.
i i~

nonnegative optimal vectors {xBxN}, = 1,2,..., such that

lim tx - XB0 X,- x~iHi i iX+ 
x N

~im B ~ N -N

From tableau (3), since x = (X N ) = 0, this is equivalent to

i N 1. ,\M0) No  N+N O

if 0 x N  > 0 then the corresponding value, of the objective function is

+

i 1

and hence the point (xcBrXN  cannot be primal optimal. So x N f 0, i s an :"

++
ii

(9) it follows that lim i1x1 = . But
i- N 0

i _Mi
x =-Mx + x > O, i =1,2,...
B N 0 B

Hence

i
N xB

+ > 0, i = 1,2,...

-I0 N 0

Since 
l
im I1x0 = it follows by the Bolzano-Wieirstrass Theorem that the bounded secuenc.

i*o N 0

INoI has an accumulation point s such that 0 s'a 0 and -Ms > 0.

By the symmetry between (1) and (5), the following result characterizes the boundedncss-

the dual optimal variables associated with (1)

-9-
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Theorem 5. (Boundedness of the dual optimal solution set) The dual optimal solution set

to the linear yrogram (1) ib bounded if and only if for some or all otalsmextableaus

such as (3) there exists a t 0 such that Lt <0.



i>1) &tc:omes and Fxamiples

:.c 5uT-arize fcr convenience the rossible and impossible combinations of unix;uenoss,

c,. : Le~ss an~d degeneracy.. of primal and dual aptimal solutions in Table 1. Exam: 1cs 11t

Iiliustratin: all the possible combinations appearing in Table 1 are given followina the

Table 1

Primal Optimal Solution

BD BD UD BD BD UD

(U) (U)

BD 1 1 1 0 0 0

I - (6') (2) (
- BD (U)1  1 1 1(1 0 0 0

U D 1 1 0 1 1* 0

B D 0 0 1 0 0 0

SBD (U) 0 0 1(1')

UD 1 0 0 0 0 0 1

B = Bounded D =Degenerate U =Unique

B= Unbounded D =Nondegenerate U =Nonunique

1(i) =PosbecmiainilsrtdbExmeW

1 = Possible combination illustrated by Example Wi

with the roles of the primal and dual problems

interchanged

0 = Impossible combination.

Example I (Primal bounded nonunique degenerate/nondegenerate, dual unique degenerate)

Max x +x2 S.t. x +x2  l x2  lx 1 O X2 O

The primal optimal solution set is {xi,x 2  x 1+x 2  1, x 0, x2 >0) contains the degenerate

voertex x 1 = 0, x 2 = 1 and the nondegenerate vertex x, = 1, x 2 =0 which correspond to the

following two optimal tableaus respectively where the slacks x 3  and x4have been introduced:

1AI



x x x =1 x x x x =

x1  X2  X3  4  1 4 3 2

1 0 1 -1 0 x 1 0 1 11×

0 1 0 1 1 x 2  0 1 0 1 x 4

0 0 1 0 1 z 0 0 1 0 1 rz

u3  U4 u1 u2 u3 u2 u1 U4

From the first tableau we observe that both primal and dual solutions are degenerate .

primal solution is nonunique, because p ." (-I) > 0, p > 0 has no solution. The :rm a -

tion set is bounded because (r r2 J)  > 0 has a nonnegative solution rI = 0, r-.

the dual solution is unique because -1 • q < 0, q > 0 has a solution. From the secon'!

tableau we observe that the nondegenerate primal solution is nonunique because it is non-

degenerate while the dual solution is degenerate. The primal solution is bounded because

(r, r2) > 0 has a nonnegative solution rI = 1, r2  1 1. Furthermore the dual solution i

unique because the primal solution is nondegenerate. By interchanging the roles of the

and dual problems this example can also serve to illustrate the case where the dual optimal

solution is bounded, nonunique degenerate/nondegenerate while the primal optimal solution

unique and degenerate.

Example 2 (Primal and dual bounded nonunique degenerate)

Maxx +X2 s.t. +x2 < i, xl+x 2 < , x1 > 0, x2 > 0

The primal optimal solution set is {xlX 2  x 1X+x 2 = 1, x1 > 0, x2 > 0) contains the two

degenerate vertices x1 = 0, x2 = 1 and x, = 1, x2 = 0 which correspond to the followin

two optimal tableaus respectively with slacks x3 and x4:

x x = x2  x4  x1 x =1

1 0 1 1 1 x1 .1 0 1 1 1 x 2

0 1 -1 0 0 x 4  0 1 0 -1 0 x4

0 0 1 0 1 z 0 0 0 1 1 z

u3  u2  u1 u4  u4  u2  u3  u1

-12-
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From these tableaus we observe that both primal and dual solutions are dec r~o!at.,

solution is not unique because p *0 ' 0, p ~'0 has no solution, but the irlinal

is bounded because (r, r2)* > 0 has a nonnengative solution r1 = 1, r-,=1. 7

solution is not unique because 0 *q < 0, q > 0 has no solution, but th'- dual -e

is bounded because (-1 0) (J2/) 0 has a solution t,= 1, t' = 1

Example 3 (Primal and dual unique and nondeqenerate)

Max x +x2 S.t. X X 1, x2  0, 1 , > C)

The unique primal optimal solution is X 1 = 2 =1 and the unique dual om.timal solu-tiorn

u =u2= 1. These solutions correspond to the optimal tableau with slacks x and x.:
1 2 3

Xx x =
xl x2 3 4

1 0 ,1 0 1x

0 1 0 1 1X2

0 0 1 1 2

u3 u 4 u I u2

we observe from the tableau that both primal and dual optimal solutions are nondegeneratc

hence they are both unique.

Example 4 (Primal unbounded nondegenerate, dual unique degenerate)

Max x2 s.t. .x 2  l xlx 2 10

The primal optimal solution set {x1 ,X 2 1 xl 1 0' x2 = 11 contains the nondegenerate vertex

XI= 0, x 2 = 1 which corresponds to the following optimal tableau where the slack x3has

been introduced:

X x

U2 2  1 3

-13-
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From the tableau we conclude that the primal solution set is unbounded because r • 0 0,

r _ S has no solution. The degenerate dual solution is unique because the primal solution 1.

nondegenerate.

Example 5 (Primal unbounded degenerate, dual unbounded degenerate)

Max x 2 s't. x , X2 > 1, xlx 2 = 0

The primal optimal solution set is {x lX2 xI > 0, x2 = 11 and the dual solution set is

u 2 u -u2 = 1, uU 2 >= 01. The primal degenerate vertex solution x= 0, x = 1 corre-

sponds to the following optimal tableau with slack variables x3 and x4:

x2 x4  x1 x =1

1 0 I 0 1 1 x2

0 1 I 0 1 0 x4

0 0 0 1 1

u u u u4 2 3 u1

From the tableau we conclude that the primal solution set is unbounded because (r I r 0

has no nonnegative solution and that the dual solution is also unbounded because

(0 1) ( 1< 0, has no nonnegative solution.

Example 6 (Primal bounded nonunique degenerate, dual unbounded degenerate)

Max x 2 2= 2= x , x I < lx 2 1- 0

The primal optimal solution set is {xlX 2 i 0 < xI < , x 2 = 1} and the dual optimal solution

set is fulU2,U3 I ul-U 2 = i, u3 = 0, U1 ,U2 > 01. A primal degenerate vertex solution is

X= 0, x2 = 1 which corresponds to the following optimal tableau with slack variables x3,

x4  and x5 :

-14-



2, 4 x5 x1 X3

1 1 0 x 4,1 1x

1 0 0 1 xK

C 0 0 0 1 j z

u u u u u
5 2 3 4 1l

C'!iom t:.., talIau we conclude that the irimal ontimal solution set is bounded because

-- r 3 1 hsanneat ouin r r 2 = 0, r3= 1. However the primal solu-

tion iS nonunicue because pi , C has no nonnegative solution. The dual optimal solutio~n

set is unbounded because (0 )< 0 has no nonnegative solution.
\t 2 1

Exangle 7 (Primal unique degenerate, dual unbounded degenerate)

Max x St X, < 1, -x +x < -1, xlI > >0
1 1= 1 2= 2=

The unique primal optimal solution is t he degenerate vertex x1 I 1 x 2  0 and corresponds

*to the followinq optimal tableau with slacks x 3  and x4

9 1 x 4  x 3  x 2 = 1

1 0 1 0 1 x

0 1 '1 1 0 x

0 0 1 0 1 z

u 3  u2  u 1 I U4

From the tableau we conclude that the primal solution is unique because p *I > 0 has the

solution p = 1 whereas the dual optimal solution set is unbounded because (U 1)(ti~ 0 has

no nonnegative solution.

-15-
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